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ABSTRACT 

This paper investigates conditions under which balanced incomplete block designs enjoy weighted optimality 

with E-criterion establishing weighted intervals for E–optimal design. More so, a neighbourhood of weights for grouped 

generalised divisible designs (GGDDs) maintaining Ew – optimal in D (v, b, k) was also investigated. The E-criterion was 

shown to be closely related to efficiency balance. Bounding arguments that are important tools in tackling E-optimality 

problems was employed; the standard bounds were generalized for seeking E-weighted optimal (EW-optimal) designs.              

The optimal bound established the best conceivable values of the criterion and thus the designs with these best values are 

optimal. 

KEYWORDS:  Weighted Optimality, Incomplete Block Design, Group Generalised Divisible Design, Bounding 

Arguments, Weighted Intervals 

INTRODUCTION 

In the design of experiments, optimal designs are a class of experimental designs that are optimal with respect to 

some statistical criterion. According to Ipinyomi, (2012), under the design of experiments for estimating statistical models, 

optimal designs allow parameters to be estimated without bias and with minimum variance. A non – optimal design 

requires a greater number of experimental runs to estimate the parameter with the same precision as an optimal design.                

In practical terms, optimal experiments can reduce the costs of experimentation. The optimality of a design depends on the 

statistical model and is assessed with respect to a statistical criterion, which is related to the variance matrix of the 

estimator. Specifying an appropriate model and specifying a suitable criterion function both require understanding of 

statistical theory and practical knowledge with designing experiments. 

Gupta et al (1999) and Gupta et al (2002) used the term “weighted optimality” when comparing a group of test 

treatments with a group of control treatments. Two different sets of control, treatment – control and treatment – treatment 

were considered to be estimated with unequal precision. Design of experiments for which some of the treatments are 

controls has form a special perspective, been extensively investigated in recent years. Notable among the many papers 

seeking optimal designs for test treatment versus control experiments are Jacroux (1989), Jacroux and Majundar (1989), 

Majundar (1992, 1996), Majundar and Notz (1983) and Stutken (1991). Optimality work for T v C experiment is a limiting 

case, as the weight on the control treatment goes to 1.  

Kiefer (1975) introduced convex optimality function ϕ on the information matrices and proved that balance 

incomplete block designs (BIBDs) are universally optimal, i.e. minimise ϕ (Cd) for every non – increasing, convex 

permutation – invariant ϕ. Following closely on the heels of Kiefer’s work, John and Mitchell (1977), Cheng (1978, 1980) 
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and Jacroux (1980) used computer search and theoretical arguments to build optimal designs for the criteria defined above, 

all of which fall into Kiefer’s frame work. More recently, Majundar and Notz (1983), Majundar (1986), Jacroux and 

Majundar (1989), Bagchi and Shah (1989), Bagchi and Berkum (1991), Bagchi (1996), Bagchi and Bagchi (2001),               

Reck and Morgan (2005) and Morgan (2000, 2003, 2007) have been working on design optimality for various classes of 

designs with blocking. 

Let Yuj be the observation on experimental unit u in block j. The commonly employed statistical model for any 

block design d, which in many cases is justifiable by randomization alone (Hinkelmann and Kempthorne, 2008) is 

Yuj = � + �d(u,j) + �j + �uj,                                                                                                                                          (1) 

Where 

� = mean response over all treatment and blocks, 

d(u,j) = the treatment assigned to unit u in block j by design d, 

�d(u,j) = the effect of the treatment assigned to unit u in block j by design d, 

�j = the effect of block j, 

and the �uj ’s are uncorrelated, mean zero random variables with common variance �E
2. This model is employed in 

most of the papers cited above. It is the basis for the information matrix mentioned earlier on. We usually assumed with no 

loss of generality that the unit variability �E
2 is �E

2 = 1. The symbol n is used for the total number of experimental units,              

n = bk 

Weighted Optimality of Block Designs 

Kiefer’s design optimality is based on functions of the information matrix that are invariant to treatment 

permutation, that is ϕ (PCdP
T) = ϕ (Cd) for any permutation matrix P. This implies equal interest in all treatments. 

However, in practice there are many cases where not all treatments are equally important. For instance, we often encounter 

experimental situations where some test treatments are to be compared to a standard treatment (or control treatment). 

Sometimes the control is included specifically to verify the expectation of large treatment effects relative to control, after 

which the important comparisons among test treatments are performed. This indicates asymmetry of interest on test 

treatments and the control treatment with (in this case) greater interest in test treatments than control. Asymmetry of 

treatment interest implies that optimality based on the information matrix should not be invariant to all permutations. 

According to Wang (2009), with the premise of asymmetric interest, the approach here is to group treatments into several 

subsets which are assigned distinct weights; larger weight reflects greater interest placed on estimating comparisons 

involving the corresponding treatments. In situations like that described above, this leads to a 2 – weight design problem, 

that is, the weights take only two values, with one small weight and v-1 larger, equal weights. 

Definition 1 

Let positive weights w1, w2, . . . wv be measures of interest on v treatments without loss of generality                         

∑ 	�	

��
  wi = 1. Let W be a v x v diagonal matrix with wi in the ith diagonal position, that is, W = Diag (wi). Also, the square 

root matrix for W is denoted as W½. Then the weighted information matrix Cdw for design d is defined as  
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Cdw = W½ Cd W
½ = ((cdii'/ √wi wi'))                                                                                                                            (2) 

The use of Cdw will be justified in the following facts. The key is to see how applying weights to Cd induces 

weights on variances of treatment contrasts. Consider the spectral decomposition of the Cdw –matrix: 

Cdw = W-½ CdW
-½ = ∑ 	�	


��
 θi fi f 'i.                                                                                                                               (3) 

Where θ0 ˂ θ1 ≤ . . .≤ θv-1 are the eigenvalues of Cdw and the fi are an orthonormal set of eigenvectors.                    

For connected designs, both Cd and Cdw are of rank v – 1, and θ0 = 0. Let w = (w1, w2, . . . , wv)' be the vector of weights.              

The eigenvector corresponding to θ0 is f0 = w½ = (√ w1, √ w2, . . . , √ wv,)' 

Basics for the Weighted E- Criterion 

Definition 2 

The weighted E – value (written as Ew) for a design d is the largest canonical weighted variance for design d.      

That is, 

Ew = 



₁
                                                                                                                                                                       (4) 

A design �̅ is weighted E-optimal (or Ew-optimal) in a design class D if it minimises the largest canonical 

weighted variance, that is, if 

E⁻dw = min Edw                                                                                                                                                       (5) 
              d∈D 

Result 2: The weighted E-value is the largest weighted variance over all treatment contrasts. 

Proof 2: The largest weighted variance over all contrasts is 

max (
���	(�ʹ�	� )

�ʹ�‾¹	�
) = max (

�ʹ�‾¹/²�� 	!‾¹/²"	
#

	

�ʹ�‾¹	�
) = max (

$ʹ�� 	%	
#

&ʹ&
) 

cʹ1=0                 cʹ1=0                             yʹw¹/²=0                                                                                                      (6) 

w¹/² is an eigenvector of '()
*

 corresponding to eigenvalue 0, so this is the largest eigenvalue of '()
* , that is 1/θ₁. 

Result says that an Ew-optimal design factors importance of contrasts into design selection in minimising impact 

of the worst case. It can be seen that for any design, increasing the weight placed on a treatment increases weighted 

variances Varw (+ʹ�� ) = [cʹW‾¹c]‾¹ Var (+ʹ�� ) of contrasts in which it is involved. Minimising summary functions of weighted 

variances (that is, minimising functions of 1/θi), pushes variances of treatments with higher weight to be smaller, this being 

at the expense of variances of treatments with smaller weights. 

STATEMENT OF THE PROBLEM  

The general formulation on the studies of optimality for treatment comparison is based on the idea that optimality 

functions of the treatment information matrix are invariant to treatment permutation which implies equal interest in all 

treatments. In practice, however, there are many experiments where not all treatments are equally important.                         

When selecting a design for such an experiment, it would be better to weigh the information gathered on different 

treatments according to their relative importance and/or interest. It is on this premise that this research work is based on 

weighted optimality criteria. 
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AIM AND OBJECTIVES 

The broad objective of this research is to explore weighted optimality of incomplete block designs. The specific 

objectives are: 

• To establish weighted intervals for E –weighted optimal (Ew – optimal) design covering possible Treatment with 

Control (TwC) situation having smaller weight on contrast. 

• A neighbourhood of weights for Grouped Generalised Divisible Designs (GGDD) maintaining Ew - optimality in 

D (v, b, k) is also investigated. 

MATERIALS AND METHODS 

The conventional criteria for evaluating design optimality are functions of the eigenvalues of the information 

matrix Cd, in the same way, many of the weighted criteria which is used to evaluate design optimality are function of the 

weighted information matrix Cdw . There are many statistical packages for analysing the information matrix of a design 

optimality such as MINITAB, SPSS and R – Statistics. In this research, I made use of R – Statistical package.  

ANALYSIS OF RESULTS 

This chapter deals with the analysis and interpretation of data. I considered different designs of different sizes for 

Ew –optimality criteria and a neighbourhood of weight for grouped generalised divisible designs (GGDD). 

Analysis and Results of Optimal Block Designs 

Example 1: For v₁ = 6, v₂ = 3, w₁ = ¹⁄₁₂ and w₂ = ¹⁄₆, the following design is Ew – optimality over                        

D (v, b, k) = (9, 11, 6) 

 

It can be observed that the above design is built up by adding the treatment 7, 8 and 9 to every block in                  

BIBD (6, 10, 3), then appending symbols (1, . . . , 6). 

Example 2: The following design in D (7, 17, 4) is Ew – optimal for v₁ = {1, 2, 3}, v₂ = {4, 5, 6, 7}, w₁ = ¹⁄₄ and 

w₂ = ¹⁄₁₆ 

 

Grouped Generalised Divisible Design 
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Example 3: The following two designs are built up from BIBD (7, 7, 3). The first design adds /0 = 1 copy of first 

block in BIBD (7, 7, 3) to obtain a GGDD (2). The second one adds /0 = 2 copies of the first block in BIBD (7, 7, 3). 

For w₁ = 2, w₂ = 1, v₁ = 3 and v₂ = 4, this design is Ew – optimal in D (v, b, k) = (7, 8, 3). 

 

For w₁ = ³⁄₁₃, w₂ = ¹⁄₁₃, v₁ = 3 and v₂ = 4, this design is Ew – optimal in D (v, b, k) 

 

Example 4: Consider the following BIBD (5, 10, 3) 

 

ᵏ⁄ᵥ = ³⁄₅, observed that ²⁄₃ > k ⁄ᵥ > ¹⁄₂, so a = 1 (by theorem). It can be checked that λ (v – k - 1) ˂  2 (k - 1), so �3 can 

be any positive number. The designs constructed by appending /0 copies of one block in the above BIBD are Ew – optimal 

in D (v, b, k) = (5, 10 +/0, 3) for v₁ = 3, v₂ = 2 and W 1/w₂ = (λ +/0)/λ = b /₃ + 1.  

Table 1: Parameters of Weight Balanced, Binary Block Designs 

V (v₁₁₁₁, v₂₂₂₂) k b r₁₁₁₁ r₂₂₂₂ λ₁₁₁₁₁₁₁₁ λ₂₂₂₂₂₂₂₂ λ₁₂₁₂₁₂₁₂ w₁₁₁₁:w₂₂₂₂ Design # 

5 (2, 3) 3 

10 9 4 9 1 3 3:1 1 
19 15 9 12 3 6 2.1 2 
20 18 8 18 2 6 3:1 3 
30 27 12 27 3 9 3:1 4 

6 

(2, 4) 

3 26 21 9 18 2 6 3:1 5 

4 
13 12 7 12 3 6 2:1 6 
26 24 14 24 6 12 2:1 7 
27 22 16 18 8 12 3:2 8 

(3, 3) 3 
11 7 4 4 1 2 2:1 9 
22 14 8 8 2 4 2.1 10 
29 22 7 16 1 4 4:1 11 

7 

(2, 5) 
3 22 18 6 16 1 4 4:1 12 
4 17 14 8 12 3 6 2:1 13 

(3, 4) 

3 
17 5 9 1 4 2 1:2 14 
23 15 6 9 1 3 3:1 15 

4 
17 16 5 16 1 4 4:1 16 
21 16 9 12 3 6 2:1 17 
23 20 8 18 2 6 3:1 18 

 (2, 6) 4 30 27 11 27 3 9 3:1 19 

8 
(3, 5) 4 26 18 10 12 3 6 2:1 20 

(4, 4) 4 
18 13 5 9 1 3 3:1 21 
29 17 12 9 4 6 3:2 22 
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Table 1:Contd., 

9 

(2, 7) 
3 24 15 6 9 1 3 3:1 23 
4 24 20 8 18 2 6 3:1 24 

(3, 6) 6 21 20 11 20 5 10 2:1 25 

(4, 5) 
4 26 6 16 1 9 3 1:3 26 
5 26 25 6 25 1 5 5:1 27 

10 

(2, 8) 4 18 16 5 16 1 4 (4:1) 28 

(3, 7) 
3 25 11 6 4 1 2 2:1 29 
5 15 3 7 8 2 4 2:1 30 

(5, 5) 5 20 13 7 8 2 4 2:1 31 
12 (2, 10) 4 19 13 5 9 1 3 3:1 32 

 

CONCLUSIONS 

Weighted intervals for Ew – optimality was established and it was shown to be closely related to efficiency 

balance. More so, bounding arguments establishes the best conceivable value of E-criterion in the first main result for            

Ew-optimal ruling out classes of inferior designs and since each of these designs achieved the best conceivable value 

respectively and the Ew – optimal designs for the 2 – weight problem with group sizes ≥ 2 i.e. GGDD(2), the necessary and 

sufficient condition for d to have weighted information matrix Cdw = Є (I – w1/2 w 1/2ʹ) for some Є and some w₁ and w₂ are 

met. Hence the designs considered in this paper are good designs. 
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